Мультимедийный интерактивный учебник Физика 10

издательства «БИНОМ. Лаборатория знаний» и Казанского федерального университета

А.И.Скворцов, А.И. Фишман, Л.Э.Генденштейн

по учебнику Л.Э.Генденштейн, А.А.Булатова, И.Н.Корнильев, А.В.Кошкина. Физика, 10 класс.
БИНОМ. Лаборатория знаний

Цель вебинара:

- познакомиться с новым мультимедийным учебником (не ЭФУ!);
- продемонстрировать его возможности в организации эффективных форм обучения, в том числе и дистанционного.

Что это такое, мультимедийный учебник?

Мультимедийный учебник – естественный эволюционный шаг!

Это не цифровая копия бумажного учебника!

ММУ содержит логически связанные между собой мультимедиа ресурсы (текст, звук, графику, фото, видео), обеспечивая возможность передачи информации по разным каналам восприятия.

Мультимедийные технологии в электронных учебниках:

✓ предоставляют широкие возможности применения активных методов обучения;

✓ *значительно* повышают наглядность и доступность учебного материала;

✓ оказывают положительное *эмоциональное воздействие* на учащихся, повышают их интерес к предмету.

Основа сценариев мультимедийного учебника

Физика. 10 класс. Учебник в 2 ч. (Базовый и углубленный уровни)

Л.Э.Генденштейн, А.А.Булатова, И.Н.Корнильев, А.В.Кошкина

Включён в Федеральный Перечень

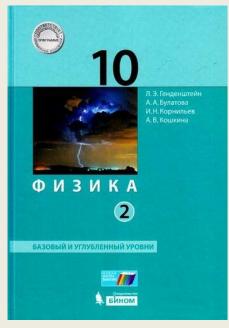
Основное содержание учебника:

Глава I Кинематика

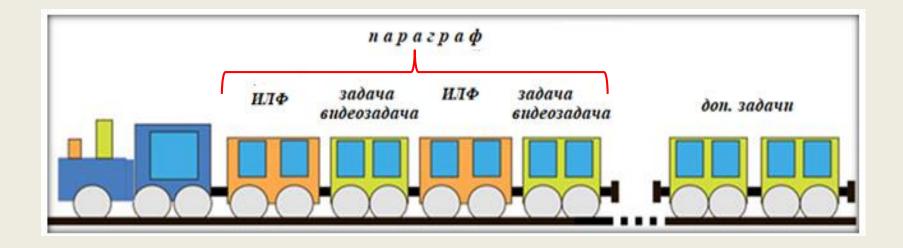
Глава II Динамика

Глава III Законы сохранения в механике

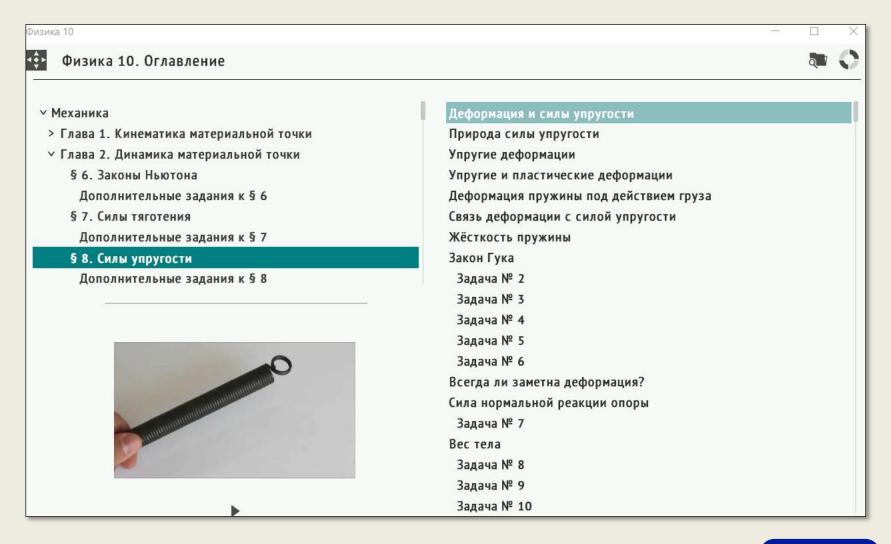
Глава IV Статика

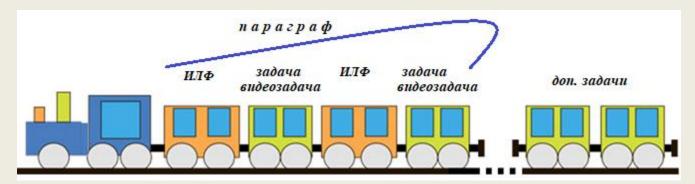

Глава V Молекулярная физика

Глава VI Термодинамика


Глава VII Электростатика

Глава VIII Постоянный электрический ток


Как построен параграф мультимедийного учебника


Каждый «параграф» учебника представляет собой последовательность:

- интерактивных лекционных фрагментов (2 3 мин);
- задач, видеозадач и вопросов;
- дополнительных задач трех уровней сложности (базовый, повышенный, углублённый).

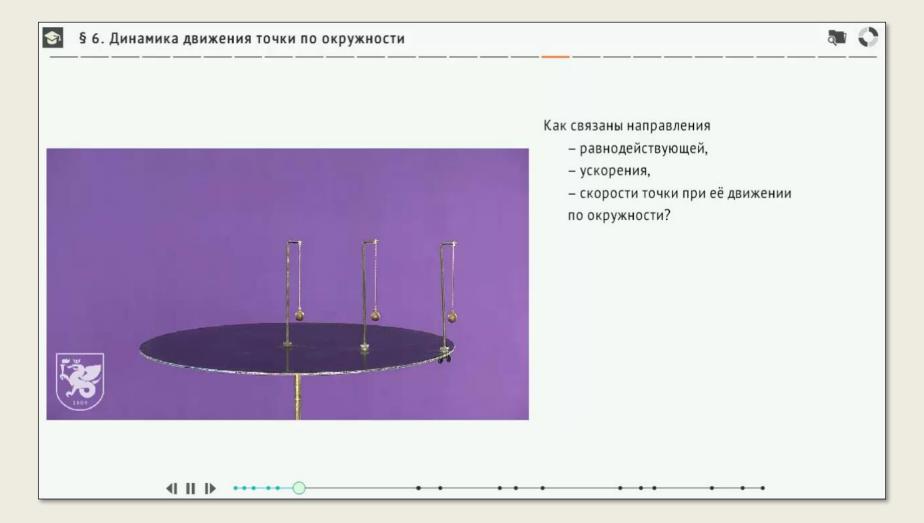
Пример параграфа: «Силы упругости»

Интерактивные лекционные фрагменты (ИЛФ)

Роль:

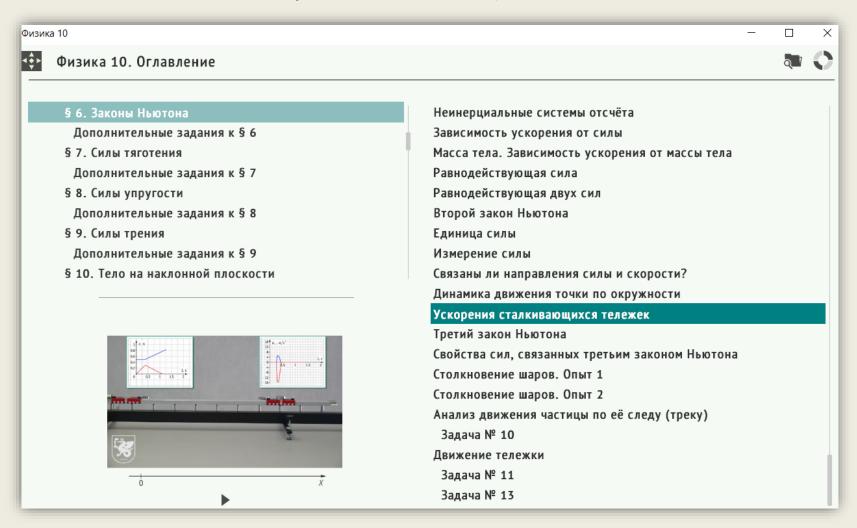
- изложение материала;
- разбор задач.

Форма:


приёмы деятельности учителя (ведение диалога, демонстрация опытов, моделей, выполнение записей на доске)

Содержат:

- видеодемонстрации;
- анимированные модели;
- контекстные вопросы и задачи;
- графики, рисунки, фотографии;
- текст.


Использование комбинации видеодемонстрации и контекстных вопросов в ИЛФ

Формирование навыков анализа опытных данных на примере экспериментального обоснования III закона Ньютона

ЛФ: Ускорения сталкивающихся тележек

Типы мультимедийных ресурсов. Видеозадачи и видеовопросы

«Лучше один раз увидеть, чем сто раз услышать!»

Роль:

- повышение мотивации;
- развитие навыков решения практических задач.

Форма: условия формулируются демонстрацией видеозаписей реальных экспериментов или явлений (задачи с неполными данными).

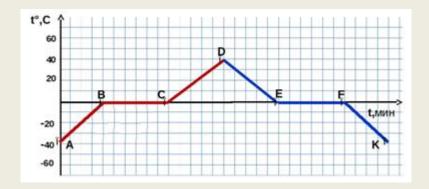
Важно! При работе с видеозадачей учащийся проходит этапы научного исследования:

- наблюдение и удивление;
- построение модели явления и его математическое описание;
- рекомендации по практическому применению.

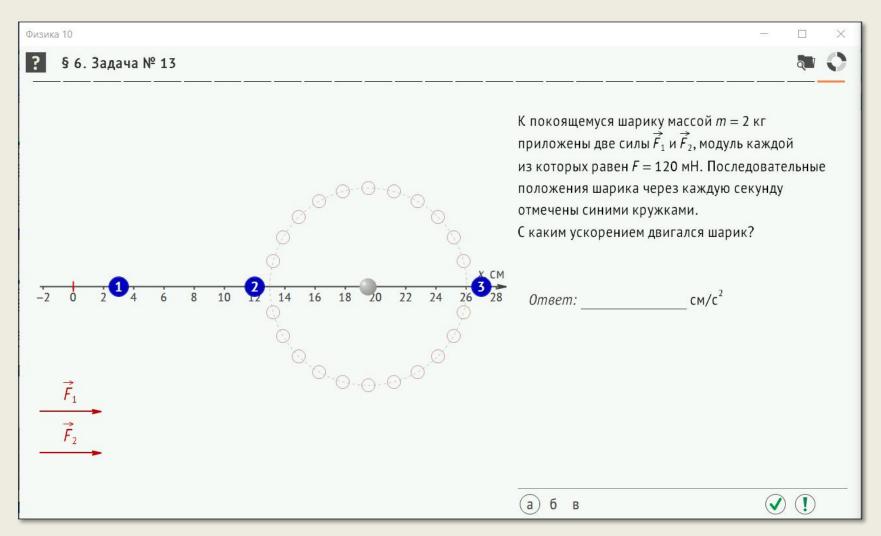
Типы мультимедийных ресурсов. Видеозадачи и видеовопросы

Типы мультимедийных ресурсов. Видеозадачи и видеовопросы

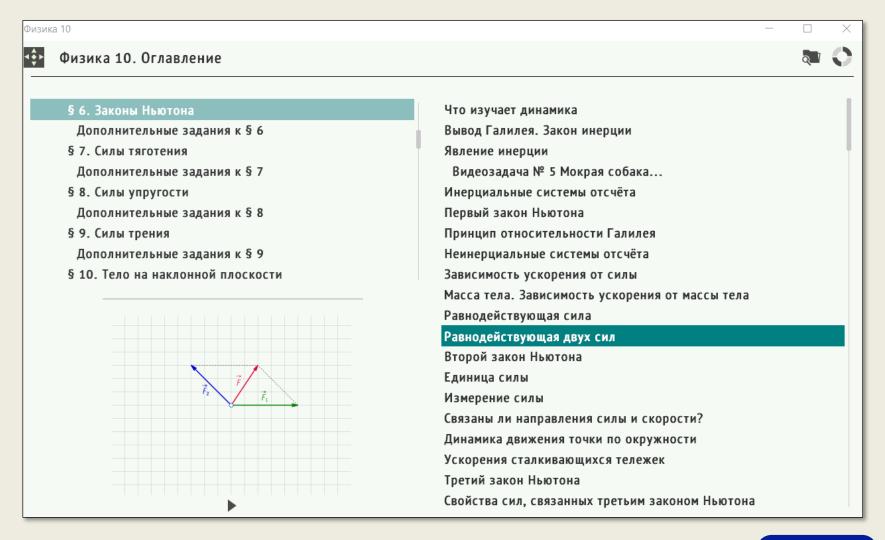
Типы мультимедийных ресурсов. Задачи с варьируемыми параметрами, интерактивные задачи.


Роль:

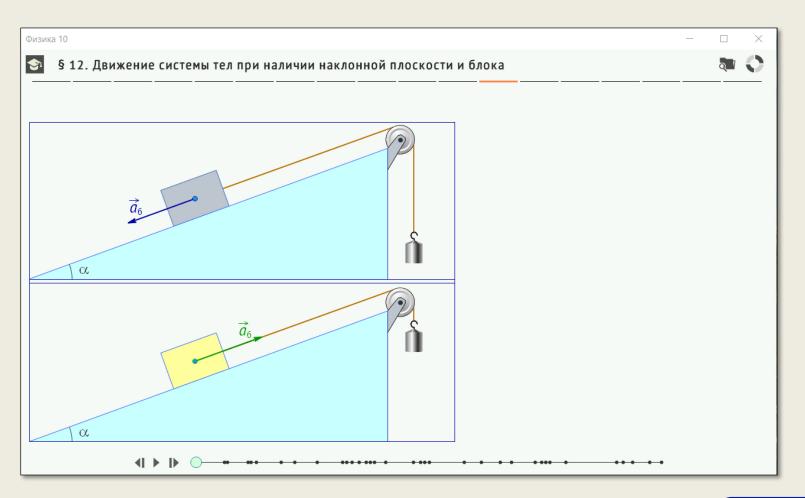
- развитие навыков анализа ситуаций;
- помощь в понимании смысла физических законов.


Виды:

- графические задачи с варьируемыми данными;
- текстовые задачи с варьируемыми данными;
- тестовые вопросы с выбором ответа.


Типы мультимедийных ресурсов. Задачи с переменными параметрами, интерактивные задачи.

Пример интерактивной задачи


Типы мультимедийных ресурсов. Задачи с варьируемыми параметрами, интерактивные задачи.

Пример интерактивного задания для самостоятельной работы

Отличительная методическая особенность — использование эффективной методики обучения физике и решению задач — **исследование ключевых ситуаций**.

Пример исследования ключевой ситуации «Движение системы тел при наличии наклонной плоскости и блока»

Количественные характеристики учебника (45 параграфов).

168 видеодемонстраций физических опытов;

173 анимированные модели, в т.ч. интерактивные;

135 графиков в задачах с переменными параметрами;

628 рисунков и фотографий;

739 контекстных вопросов и задач внутри ЛФ, в том числе 40 интерактивных;

368 задач «на понимание и закрепление» между ЛФ.

между ЛФ. Дополнительные задачи в конце параграфа трёх уровней сложности: базовый, повышенный, высокий (198/244/188), в т.ч. интерактивные (22).

Количественные характеристики учебника (45 параграфов).

168 видеодемонстраций физических опытов;

173 анимированные модели, в т.ч. интерактивные;

135 графиков в задачах с переменными параметрами;

628 рисунков и фотографий;

739 контекстных вопросов и задач внутри ЛФ, в том числе 40 интерактивных;

368 задач «на понимание и закрепление» между ЛФ.

ММУ по физике должен приблизить процесс познания окружающего мира к естественному: от живого созерцания и наблюдения, к анализу увиденного, построению моделей и выводу закономерностей, их экспериментальной проверке и поиску практического применения новых знаний.

ММУ должен дать возможность уйти от «меловой физики» не в мир компьютерной анимации, а к обсуждению «физики вокруг нас».

Что получит учитель?

Оригинальный сценарий и техническая реализация мультимедийного учебника помогут учителю:

- ✓ повысить интерес учащихся к изучению физики;
- ✓ вовлечь учащихся в учебный процесс, используя активные методы обучения;
- ✓ эффективно обучать методам решения задач и создать систему подготовки к ЕГЭ;
- ✓ развить навыки исследовательской деятельности;
- ✓ повысить эффективность самостоятельной работы учащихся на уроке и дома;
- ✓ организовать эффективное дистанционное обучение.

Методика использования мультимедийного учебника в условиях дистанционного обучения

Каждый ученик скачивает учебник с сайта издательства или с флешки учителя и устанавливает его на свой компьютер.

Для работы с учебником интернет *не требуется*.

Учитель, к примеру, может использовать метод «перевёрнутого урока»: ученик самостоятельно просматривает обозначенную учителем часть параграфа, отвечает на вопросы по ходу изложения, решает задачи внутри параграфа и дополнительные задачи, указанные учителем. На этом этапе учитель — на втором плане.

Учитель при дистанционном общении вносит пояснения, ещё раз обсуждает те или иные места, при необходимости вносит дополнения и т. д.

Важно! На этом этапе учитель освобождён от «изложения материала», он работает с уже «подготовленными» учениками, освобождается время для более детальной проработки материала и решения задач.

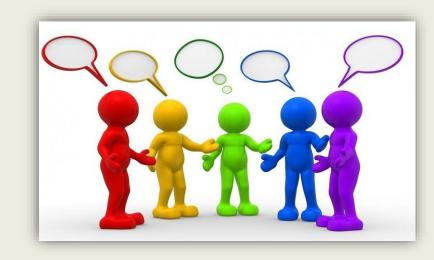
Наша страница на сайте издательства БИНОМ: http://www.lbz.ru/metodist/authors/physics/1/

Скачать архив с мультимедийным учебником

http://files.lbz.ru/efu/fizika/free/pos100001102.zip

Скачать программу-установщик

http://files.lbz.ru/efu/fizika/free/SetupPhys10.exe


Скачать «Руководство пользователя «Ученик»

Вопросы: Карауш Евгений Сергеевич, karaush@lbz.ru

Мы с благодарностью примем Ваши замечания и пожелания.

e-mail: aif@kpfu.ru

Фишман Александр Израилович

Спасибо за внимание!